Tools for assessing and mitigating water quality risk from forest roads and timber harvesting

ANZIF Conference, Tweed Heads,

October2023
Petter Nyman ${ }^{1,2}$, Alex Sims ${ }^{1}$, Patrick Lane ${ }^{2}$ and Phil Noske ${ }^{2}$
${ }^{1}$ Alluvium Consulting, Melbourne, Australia
${ }^{2}$ School for Forest and Ecosystem Science, University of Melbourne

- The issue: soil disturbance, roads and erosion
- Management solutions
- Tool 1: Effectiveness of riparian buffers
- Tool 2: Managing road networks for water quality outcomes
- Tool 3: Cumulative impacts framework (conceptual)

The issue: soil disturbance, roads and erosion

The issue: soil disturbance, roads and erosion-

Inadequate
drainage \rightarrow erosion from roads surfaces

Crossings \rightarrow Direct sediment input at stream crossings

The issue: soil disturbance, roads and erosion

Water quality issues can be exacerbated by wildfire and rainfall extremes

Management solutions

Management solutions

- Buffers to reduce connectivity between disturbed areas and waterways
- Road design
- Drainage spacing to reduce erosion from road surfaces and to minimise point discharge at drains
- Crowning to reduce surface runoff on roads
- Drains and erosion control at crossings
- Road placement
- Seasonal closures
- Harvesting limits
- Rehabilitation

Mitigation: Buffers, drainage spacing, seasonal closures and other restrictions

Management solutions - the role of models

Case study 1: Effectiveness of riparian buffers

How far does surface runoff, that carries sediment, travel through vegetation in different forest environments before it's absorbed into the ground?

vbt5: This is the volume of water absorbed when the plume reaches 5 meters.

Case study 1: Effectiveness of riparian buffers

How far does surface runoff, that carries sediment, travel through vegetation in different forest environments before it's absorbed into the ground?

Plume lengt $\left(l_{\text {pred }}\right)=5 \frac{V_{\text {out }}}{v b t 5}$ (Hairsine et al, 2002)

Case study 1: Effectiveness of riparian buffers

- A new outcome-based framework: probability of exceedance curves
- what level of risk do we want to accept?
- Evaluated the effects of variable runoff from snig tracks due to:
- Non-compliance in drainage structures
- Climate chance related increases in rainfall intensity
- Framework provides transparency and evidencebase to optimise buffer widths as a mitigation measure
- Can deliver as a decision support tool for setting buffer widths according to risk appetite and hydrological setting.
- Prototype tool developed in excel and as a geo[processing tool in for GIS software

Case study 2: Managing road networks for water quality outcomes

How much sediment delivery can I expect from my road network and how can this be best managed?

We designed a GIS toolbox to assess and quantify the risks to water quality from forest roads and to compare forest management practices. The tool's input requirements are (1) a DEM of the catchment and (2) the road network of interest.

The toolbox has been developed in ArcGIS and outputs are generated through automated geoprocessing workflows.

Case study 2: Managing road networks for water quality outcomes

Case study 2: Managing road networks for water quality

ArcGIS toolbox
 outcomes

1)

2)

Case study 2: Managing road networks for water quality
Effects of crowning:

outcomes

Crowning factor: 1, Storm AEP: 1 in 10 year

Crowning factor: $\mathbf{0 . 5}$, Storm AEP: 1 in 10 year

Case study 2: Managing road networks for water quality
Effects of rainfall event:

outcomes

Crowning factor: 1, Storm AEP: 1 in 10 year

Crowning factor: 1, Storm AEP: 1 in 50 year

Case study 3: Cumulative impacts framework (conceptual)

What is the cumulative impacts of sediment transport in catchments due to forest roads and snig tracks? What are the sediment delivery trajectories for different management scenarios?

Single snig track

Single snig track and permanent road

Log landing
Snig track
In-coupe road

Water quality monitoring site

Single pulse disturbance

Single press disturbance

- Sediment delivery remains permanently elevated above background levels
- Local variation dependent on traffic, vegetation, soil type etc

Combined signature

An initial spike in sediment concentration, then decline, but sed. concentration remains elevated above background levels

Multiple snig track and permanent road:
staggered harvest

$3 \times$ pulse disturbances, staggered over time

Single press disturbance

Combined signature

Cycles of spike and recovery following each harvest

Conclusions

- Codes/prescription/protocols/standards are important. They help ensure mitigation measures are in place and the sector apply best practise in managing impacts on water quality.
- But there are circumstances where things don't go to plan
- Wildfire, extreme rainfall events
- Lack of maintenance, limits on funding,
- Roads for firefighting, built as part of emergency response
- Governance, legacy roads,
- Models help us refine management solutions to achieve outcomes that factor in local conditions and uncertainty
- The sediment delivery hazard varies across landscapes
- The risk varies depending on the values we are managing for
- The risk varies with rainfall conditions, and this is not always considered in standards
- Decades of field experimentation and empirical research provide us with the fundamentals to build models to help focus and refine our mitigation efforts.
- Model development and testing is an ongoing process.
- There are low-hanging fruits in the tools that we have presented, that are sufficiently robust to improve the effectiveness of risk mitigation

We are passionate about the protection and restoration of waterways, catchments and water resources. We strive to make a positive difference to the world we live in.

