

Changes in water use of a Mountain Ash forest during and after the Millennium Drought

Clare Stephens, Larry Band, Lucy Marshall, Fiona Johnson, Belinda Medlyn, Martin de Kauwe & Anna Ukkola

Hydrol. Earth Syst. Sci., 26, 6073–6120, 2022 https://doi.org/10.5194/hess-26-6073-2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

The RHESSys ecohydrologic model

Hydrology

Vegetation

Higher evapotranspiration in the post-drought period

Higher evapotranspiration in the post-drought period

Hypothesis 1:

Altered post-drought climate (relative to pre-drought) drove higher ET at the expense of streamflow

Hypothesis 2:

Ecological effects of the drought persisted in the post-drought period, driving higher ET

Modelling experiments

Hypothesis 1: Post-drought climate

Simulate *pre-drought – post-drought*

Isolates the effect of post-drought climate, no drought feedbacks

Hypothesis 2: Ecological feedbacks

Simulate *pre-drought – drought – pre-drought*

Isolates the effects of drought feedbacks, no post-drought climate change

Original

-37.56

-37.60

-37.64

-37.56

-37.60

-37.64

145.90

145.90

(b3)

145.94

145.94

145.98

145.98

146.02

146.02

(a3)

Post-drought - pre-drought ($\Delta P = -4\%$)

ΔLAI

0.25 0.15 0.05 -0.05

- -0.15

E -0.35 -0.45

ΔET (mm)

90 70 50 30 10 -10 -30 -50 -70 -90

-0.25

Experiments

Summary

- Evapotranspiration in Walshes Creek remained steady despite reduced rainfall during the drought
- This was partly facilitated by riparian resilience to drought (due to water and nutrient redistribution)
- Post-drought ET was higher than pre-drought throughout the catchment despite slightly lower rainfall
- Due to a combination of warmer temperatures in the post-drought period and droughtinduced changes in nutrient cycling
- Forest hydrology is important for water supply, and these insights can aid future planning and management given long-term drying projections

Dynamics of Australian Vegetation (DAVE)

Ongoing project to understand climate change impacts on ecosystem function

Stephens, C., Band, L., Johnson, F., Marshall, L., Medlyn, B., De Kauwe, M. and Ukkola, A. (2023) Changes in blue/green water partitioning under severe drought, *Water Resources Research*

Contact: c.stephens@westernsydney.edu.au

