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Total log length (𝐿) in relation to DBH under the curve of the maximum attainable merchantable height for the 0.448 

million stems drawn on the left as clustered heatmaps. The numbers in the grid cells indicate the number of stems in 

thousands. The corresponding frequency distributions of DBH (center) and 𝐿 (right) were shown together with 

characteristic percentiles and descriptive statistics. 



Boxplots of SED (left) and log length (right) across the sequential log numbers for the 1.58 million logs (including waste 

sections) cut-to-length from the 0.448 million stems contained in the screened harvester data set. The numbers in the middle 

vertical stripe indicate the number of logs across the sequence. The boxplots in the top horizontal stripe are for all the logs 

combined.



𝑆𝐼 = 𝐷𝐵𝐻𝐻 − 𝐷𝐵𝐻𝑇
2 + 𝐿𝐻 − 𝐿𝑇

2 + 𝑆𝐸𝐷𝑇𝐿𝐻 − 𝑆𝐸𝐷𝑇𝐿𝑇
2



𝑙𝑛ℎ = 𝑎1 + 𝑎2𝐿 + 𝑎3 𝑇 + 𝑎4 𝑑3 + 𝑎5 𝐷𝐵𝐻3 𝑙𝑛 1 − 𝑑

  Nonlinear:    ℎ = 1 − 𝑑 𝑎1+𝑎2𝐿+𝑎3 𝑇+𝑎4 𝑑3+𝑎5 𝐷𝐵𝐻3

𝐻 =
𝐿 + 𝐻𝑠 − 𝐻𝑏

1 − 𝑑 𝑎1+𝑎2𝐿+𝑎3 𝑇+𝑎4 𝑑3+𝑎5 𝐷𝐵𝐻3
+ 𝐻𝑏

Notation: 𝐷𝐵𝐻  diameter at breast height overbark in cm；

  𝐻  total tree height from ground level to tip of the tree in m；

  𝐻𝑠  the average stump height of 0.15 m;

  𝐻𝑏  the defined breast height of 1.3m above ground level;

  𝐿  total log length, i.e. the sum of lengths of logs and waste sections of a stem in m;

  𝑆𝐸𝐷𝑇𝐿 SED of the top log in cm, the smallest SED of a cut stem；

  𝑑 = Τ𝑆𝐸𝐷𝑇𝐿 𝐷𝐵𝐻 , relative diameter that takes any value between 0 and 1;

  ℎ = Τ𝐿 + 𝐻𝑠 − 𝐻𝑏 𝐻 − 𝐻𝑏 , relative height above breast height;

  𝑇 Τ= 𝐷𝐵𝐻 − 𝑆𝐸𝐷𝑇𝐿 𝐿, average taper over total log length.



• Non-independent errors Because the CTL simulations processed each taper tree 6 times using 6 

   values of 𝑆𝐸𝐷𝑇𝐿𝜏, there was an inherent correlation among the 

    residuals from the same tree. 

• Heteroskedasticity  The 6 values of 𝐿 for each taper tree represented different proportions 

   of its total tree height 𝐻. As 𝐿 decreased and 𝑆𝐸𝐷𝑇𝐿𝜏 increased, the 

    magnitude of residual variation became increasingly larger, presenting 

   a clear case of heteroskedasticity. 

• Estimation   System of 6 equations estimated by Generalized Method of Moments 

   (GMM).

 𝐻1 = 𝑓 𝑋, 𝜃 + 𝜀1

𝐻2 = 𝑓 𝑋, 𝜃 + 𝜀2

⋮
𝐻6 = 𝑓 𝑋, 𝜃 + 𝜀6
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• Leave-one-tree-out This cross-validation approach was adopted to obtain prediction errors 

   from and for trees that were independent of the model building process. 

• Benchmarking statistics Five benchmarking or validation statistics commonly used in forest growth and 

   yield modelling.

• Models compared Our new model and Varjo’s (1995) equation

• Model  Forms  Linear and nonlinear 

 



Our new model in its nonlinear form 
was the least biased and most precise 
in predicting the total tree height of 
cut-to-length Pinus radiata stems.





relative diameter 

 d 
N 

Median 

Skewness 

Kurtosis 

MEP 

(m) 

MAEP 

(m) 
MSEP 𝐑𝐩

𝟐  

𝑑 ≤ 0.20 1817 -0.15 -0.10 0.48 0.39 0.99 

  0.88 0.81 0.85 1.06 0.97 

  2.78 (-0.12) (0.57) (0.37)  

0.20 < 𝑑 ≤ 0.30 954 0.02 0.05 0.46 0.40 0.98 

  0.97 0.51 0.64 0.72 0.97 

  6.44 (0.10) (0.71) (0.55)  

0.30 < 𝑑 ≤ 0.40 2599 -0.03 0.04 0.88 1.42 0.98 

  0.70 0.30 0.99 1.75 0.97 

  2.29 (0.14) (0.89) (0.81)  

0.40 < 𝑑 ≤ 0.50 3081 -0.12 0.00 1.08 2.14 0.96 

  0.60 -0.03 1.27 2.84 0.95 

  1.91 (-0.09) (0.85) (0.75)  

0.50 < 𝑑 ≤ 0.60 741 -0.07 0.22 1.10 2.68 0.98 

  1.33 -0.66 1.48 4.00 0.96 

  3.55 (-0.33) (0.74) (0.67)  

0.60 < 𝑑 ≤ 0.70 3125 -0.43 -0.03 1.89 6.02 0.91 

  0.76 -0.37 2.13 7.22 0.90 

  0.93 (0.08) (0.89) (0.83)  

0.70 < 𝑑 ≤ 0.80 3197 -0.41 0.12 2.77 12.29 0.83 

  0.51 0.14 2.79 12.30 0.83 

  0.11 (0.85) (0.99) (1.00)  

0.80 < 𝑑 ≤ 0.90 2194 -0.22 -0.02 3.13 15.80 0.79 

  0.26 0.17 3.17 15.18 0.80 

  0.26 (-0.14) (0.99) (1.04)  

0.90 < 𝑑 ≤ 0.95 873 0.40 0.69 3.06 15.86 0.61 

  0.18 -0.37 3.07 14.20 0.65 

  0.14 (-1.85) (0.99) (1.12)  

0.95 < 𝑑 < 0.98 13 3.14 3.43 3.79 26.42 0.04 

  0.83 2.40 2.89 14.05 0.49 

  0.35 (1.43) (1.31) (1.88)  

 

Our new model in its nonlinear 
form also performed better than 
the nonlinear form of Varjo’s
(1995) model across relative 
SEDTL (top end) diameter classes 
where d≤0.9.



• The distribution of prediction errors was highly leptokurtic with an excess kurtosis of 2.90. When the benchmarking statistics were 

examined locally across nine intervals of 𝑑, the MSEP was found to increase from 0.39 when 𝑑 ≤ 0.20 to 15.86 when 0.91 < 𝑑 ≤ 0.95, an 

increase of almost 40 folds, while the bias of prediction, as indicated by MEP, was negligible across the intervals. 

• These results indicated that the prediction error (𝜀) was highly heteroskedastic and its variance was conditional upon 𝑑 and possibly other 

predictor variables in the model. Such conditional heteroskedasticity meant that the conditional variance of  𝜀 was a function of the predictor 

variables. Therefore, a skedastic or weighting function must be first derived to delineate the pattern of heteroskedasticity and adequately 

quantify the conditional variation of 𝜀. Such a function would be used for weighting 𝜀 so that the weighted prediction errors (𝜀𝑤) could 

become much less heteroskedastic and more homoscedastic before being characterized through a probability density function (PDF). 



• Skedastic and weighting functions



• Shape of the two selected weighting functions
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𝜀𝑤 =
𝜀

𝑤 𝑑, 𝐷𝐵𝐻

𝜀𝑤+=𝜀𝑤 + 𝐶𝐼  



The three-parameter Burr Type XII (BXII) distribution:

𝑓 𝑥 =
𝑐𝑘

𝛼

𝑥

𝛼

𝑐−1

1 +
𝑥

𝛼

𝑐 − 𝑘+1

where 𝑥 > 0 is a non-negative continuous random variable, 𝛼 > 0 is the scale parameter, 𝑐 > 0 and 𝑘 > 0 are 

the shape parameters of the distribution. The mean and variance of the three-parameter BXII distribution are 

given by:

𝐸 𝑥 =
𝛼

𝑐
𝛽

1

𝑐
, 𝑘 −

1

𝑐
,  𝛼 > 1, 𝑐 > 1

𝑉𝑎𝑟 𝑥 =
2𝛼2

𝑐
𝛽

2

𝑐
, 𝑘 −
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−
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1

𝑐
, 𝑘 −

1

𝑐

2

,  𝛼 > 2, 𝑐 > 2

Because the BXII distribution is a positive continuous distribution, the weighted prediction

errors were shifted to the positive domain by adding a positive integer: 𝜀𝑤+=𝜀𝑤 + 𝐶𝐼 
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WF11 Top: Density distribution histograms of a sample of 3099 weighted and 

shifted prediction errors (𝜀𝑤+) derived through the two best performing 

weighting functions (WF11 and WF13) overlayed with their fitted BXII 

PDF curves. 

Bottom: Corresponding Q-Q plots of the empirical quantiles of 𝜀𝑤+ and 

the quantiles of the fitted BXII distributions. 



1. The tree height model will facilitate and widen the utilization of harvester data far beyond the 
current limited use of monitoring log yield and assortment only.

2. It will enable the full integration of harvester data with conventional inventory data, remote 
sensing imagery and LiDAR data for the development of harvester-based inventory systems, for 
the prediction of attributes of individual trees, stands and forests, and for the estimation of 
product recovery and residue biomass in radiata pine plantations. 

3. Accurately estimated total tree height will make harvester data a potential source of taper data to 
supplement the conventional destructive taper sampling in the field. 

4. The model will also facilitate (1) the screening and exploratory analysis of harvester data, (2) 
the calibration and estimation of bark thickness, (3) the mapping of site index, (4) the 
development site-specific height-diameter curves, and (5) the post-thinning assessment of 
diameter and height distributions of retained versus removed stems.

5. Our characterized prediction error distribution would help to unlock the full potential of the tree 
height model in many research and practical applications, particularly when uncertainty 
assessments, statistical inferences and error propagations are needed in harvester data analytics.

6. The tree height model will help the transformation of big harvester data into valuable data for 
forest  management.
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