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Introduction

CTL harvesters as a major source of big data for forest management

Modern cut-to-length (CTL) harvesters have been widely utilised to improve log harvesting productivity in
plantations. Equipped with a GPS receiver and a computerized harvester head, they constantly capture,
accrue and provide a daily flow of spatially explicit and timestamped data on log production and
assortment as well as detailed diameter and log length measurements of harvested stems over large
operational areas.

Harvesters can capture the total log length but not the total height of

individual trees.
The lack of total tree height data represents a stumbling block in the full integration of harvester data with

conventional inventory data, remote sensing imagery and LiDAR data.
Transformation of big data into valuable data for forest management

Without the full data integration, maximum value extraction from harvester data cannot be attained,
preventing the transformation of big harvester data into valuable data for forest management.




Introduction

4. Estimating tree height of CTL stems - a first step in harvester data analytics

For the most effective use of harvester data, a necessary first step is to estimate the total height of each
harvested tree that was bucked, measured and recorded by the harvester head.

5. Previous methods of tree height estimation

(a) Varjo's (1995) log linear model predicts the length of unprocessed treetop from DBH, total log length
and SED of the top log. It appeared in a short two-and-half page section of an internal research paper of
the Finnish Forest Research Institute. The essential elements of model development such as model
formulation, variable selection, parameter estimation, model testing and statistical validation were not
documented.

(b) Iterative search algorithm through a taper equation.

6. A new tree height model is needed for cut-to-length (CTL) Pinus radiata stems
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Data

1. Taper Data
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Data

2. Harvester Data
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million stems drawn on the left as clustered heatmaps. The numbers in the grid cells indicate the number of stems in
thousands. The corresponding frequency distributions of DBH (center) and L (right) were shown together with

characteristic percentiles and descriptive statistics.




Data

2. Harvester Data

All| ——— 1,580,858 ] .
9-10 — 1,384 | ——— ..
8 e 5,584 _ 5 | ¥
4 . — v camcesen o b
E 18,730
g 6 . 56,921 |-
=
20 5 o 136,402
- 4 . 229,913
3 301,848
2| — 381,597 :[
1 — 448,479

0 10 20 30 40 50 60708090 N O 2 4 6 8 10 12152025
SED (cm) Log length (m)

Boxplots of SED (left) and log length (right) across the sequential log numbers for the 1.58 million logs (including waste
sections) cut-to-length from the 0.448 million stems contained in the screened harvester data set. The numbers in the middle
vertical stripe indicate the number of logs across the sequence. The boxplots in the top horizontal stripe are for all the logs

combined.




§ 10 12 14 16 18
Height above ground level (m)

20

22

24

g
L
-
=
)
m
90!

(9%
o]

[\
o)

N =448,479

T
0.99
0.90
0.75
0.50
0.25
0.01

b &
1.02 0.88 1
0.13 0.77 1
3.90 0.18 1.30
5.31 0.03 1.66
4.84 0.06 1.36
2.58 0.37 0.59




Model development and validation

1. Model derivation

(a) Considered the relative stem profile of the part of the stem above breast height.
(b) Followed the approach of Bi (2000) in the construction of the trigonometric variable-form taper model.
(c) Modelin both linear and nonlinear form:

Linear:  Inh = (a; +a,L + agVT + a,Vd3 + asVDBH3)In(1 — d)

Nonlinear: h=(1-— d)a1+a2L+a3\/T+a4\/d3+a5VDBH3

L+ Hg — Hy
H — S Hb
(1- d)a1+a2L+a3\/7+a4\/ﬁ+a5\/DBH3
Notation: DBH diameter at breast height overbark in cm;

H total tree height from ground level to tip of the tree in m;
H, the average stump height of 0.15 m;
H, the defined breast height of 1.3m above ground level;
L total log length, i.e. the sum of lengths of logs and waste sections of a stem in m;
SEDTL SED of the top log in cm, the smallest SED of a cut stem;
d = (SEDTL/DBH), relative diameter that takes any value between 0 and 1;
h = (L + H, — H,)/(H — Hp), relative height above breast height;

T = (DBH — SEDTL)/L, average taper over total log length.




Model development and validation

2. Parameter estimation

* Non-independent errors Because the CTL simulations processed each taper tree 6 times using 6
values of SEDTL,, there was an inherent correlation among the
residuals from the same tree.

» Heteroskedasticity The 6 values of L for each taper tree represented different proportions
of its total tree height H. As L decreased and SEDTL, increased, the
magnitude of residual variation became increasingly larger, presenting
a clear case of heteroskedasticity.

« Estimation System of 6 equations estimated by Generalized Method of Moments
(GMM).

H =fX0)+¢
H,=f(X,0)+¢

H6 =f(X,9)+86
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Model development and validation

3. Evaluating and comparing prediction accuracy

* Leave-one-tree-out This cross-validation approach was adopted to obtain prediction errors
from and for trees that were independent of the model building process.

Benchmarking statistics Five benchmarking or validation statistics commonly used in forest growth and

yield modelling.
* Models compared Our new model and Varjo's (1995) equation
* Model Forms Linear and nonlinear
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Observed total tree height (m)
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Model development
and validation

3. Evaluating and comparing
prediction accuracy

Our new model in its nonlinear form
was the least biased and most precise
in predicting the total tree height of
cut-to-length Pinus radiata stems.
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Characterizing prediction errors through a PDF

The distribution of prediction errors was highly leptokurtic with an excess kurtosis of 2.90. When the benchmarking statistics were
examined locally across nine intervals of d, the MSEP was found to increase from 0.39 when d < 0.20 to 15.86 when 0.91 < d < 0.95, an
increase of almost 40 folds, while the bias of prediction, as indicated by MEP, was negligible across the intervals.
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» These results indicated that the prediction error (¢) was highly heteroskedastic and its variance was conditional upon d and possibly other
predictor variables in the model. Such conditional heteroskedasticity meant that the conditional variance of & was a function of the predictor
variables. Therefore, a skedastic or weighting function must be first derived to delineate the pattern of heteroskedasticity and adequately
quantify the conditional variation of . Such a function would be used for weighting ¢ so that the weighted prediction errors (¢,,) could

become much less heteroskedastic and more homoscedastic before being characterized through a probability density function (PDF).




Characterizing prediction errors through a PDF

 Skedastic and weighting functions
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Characterizing prediction errors through a PDF

» Shape of the two selected weighting functions
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Characterizing prediction errors through a PDF
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Characterizing prediction errors through the Burr Type XII distribution
The three-parameter Burr Type XI1 (BXII) distribution:

o=@ (@)

where x > 0 Is a non-negative continuous random variable, « > 0 is the scale parameter, c > 0 and k > 0 are
the shape parameters of the distribution. The mean and variance of the three-parameter BXII distribution are
given by:

a 1 1
E(x) =—,3<—,k——>, a>1c>1
c’ \c C

2% (2 2\ a? 1 1 ‘
-5 (D) (1)) a2

c c c2 c c

Because the BXII distribution is a positive continuous distribution, the weighted prediction
errors were shifted to the positive domain by adding a positive integer: ¢,,,=¢,, + C;
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Characterizing prediction errors through the Burr Type XII distribution
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Conclusions

1. The tree height model will facilitate and widen the utilization of harvester data far beyond the
current limited use of monitoring log yield and assortment only.

2. It will enable the full integration of harvester data with conventional inventory data, remote
sensing Imagery and LIDAR data for the development of harvester-based inventory systems, for
the prediction of attributes of individual trees, stands and forests, and for the estimation of
product recovery and residue biomass in radiata pine plantations.

3. Accurately estimated total tree height will make harvester data a potential source of taper data to
supplement the conventional destructive taper sampling in the field.

4. The model will also facilitate (1) the screening and exploratory analysis of harvester data, (2)
the calibration and estimation of bark thickness, (3) the mapping of site index, (4) the
development site-specific height-diameter curves, and (5) the post-thinning assessment of
diameter and height distributions of retained versus removed stems.

5. Our characterized prediction error distribution would help to unlock the full potential of the tree
height model in many research and practical applications, particularly when uncertainty
assessments, statistical inferences and error propagations are needed in harvester data analytics.

6. The tree height model will help the transformation of big harvester data into valuable data for

forest management. — i
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