

ANZIF Conference 2023

Tree improvement in plantation forestry in Australia

T A McRae, G W Dutkowski, M Ivkovic, R J Kerr, J Klapste, D C McKersie, D J Pilbeam, K Joyce and D P Kain

Plantation forestry

Increasing demand for forest products

Options:

utilise more native forest resources (not likely) increase imports (not desirable) increase plantation estate area (constraints) increase productivity per unit area increase recoveries

Improved genetics plays a crucial role

Tree Breeding Australia

Industry consortium supporting national cooperative programs radiata pine and blue gum

Founded in 1983 (as STBA) to breed and produce seed

Divested of seed production in 2001 to focus on breeding

Transitioned to TBA in 2019 to reflect its national profile

Supports breeding programs of collaborating companies and organisations in Australia and overseas – providing access to systems, tools and expertise

Fundamentals of tree improvement

Define the breeding.com objective(s)

Need genetic resources fit for purpose (adapted)

Effective <u>breeding</u> programs

Rigorous <u>testing</u> programs

Efficient management of data and information

Best practise data analysis and genetic evaluation

Effective <u>selection</u> for further breeding and deployment

Tree improvement programs

We have advanced generation breeding programs for the main species

Some interest in other minor and emerging species

Breeding objectives (largely economic)

Australian breeding programs

National Plantation Inventory regions

	P. radiata	E. globulus	E. nitens	Southern pines
Climate	Temperate - medium rainfall	Temperate - medium to high rainfall	Temperate - medium to high rainfall	Tropics and sub-tropics high rainfall
Region	NSW, Victoria, SA, WA and Tasmania	WA, SA, Victoria and Tasmania	Tasmania and Victoria	Queensland (+ N NSW)
Area	691,000+ ha	342,000 ha decreasing	182,000 ha	140,000 ha
Market	Structural sawn timber for building, joinery, plywood, posts, poles, residues for pulp, particle and panel board	Export chip for pulp and paper (developing interest in solid wood and veneers)	Export chip for pulp and paper, solid wood and veneers	Structural sawn timber for building, joinery, plywood, posts, poles, residues for pulp, particle and panel board
Breeding Programs began	1950s	late 1980s	1970s	1950s

The rolling front

Change <u>from discrete cycles</u> of breeding <u>to rolling front programs</u> has led to efficiencies and increased rates of gain

Introduced some challenges in data analysis

Overcame with better analytical software (TREEPLAN)

Need effective breeding programs

Pinus radiata - breeding crosses

Dedicated facilities for breeding

Need rigorous testing programs

Pinus radiata - total genetics trials established since 1996

cumulative trials

TREE

BREEDING AUSTRALIA

🗆 cum trees 🔳 trees

Trials are better linked across sites and years

Families in common

Parents in common

We did the research (ongoing) to develop non-destructive methods of assessing wood quality

Tools are used routinely in tree breeding programs.

	Acoustic wave velocity (ST300 and Fakopp)		IML RESI PD3-400	
	Trials	Trees	Trials	Trees
Radiata pine	67	62,381	29	122,903
Blue gum	3	2332	20	44,882
Shining gum	10	6,260	18	32,949
Southern pines	30	52,154	3	1915

Radiata pine Marginal improvement in timber STIFFNESS (GPa) for a vertically integrated industry

More testing in more environments

Want to double the rates of genetic gain

Testing in more environments (climate change and industry expansion)

More phenotyping and genotyping (want the right plant in the right place)

FWPA and NIFPI projects supported by government and industry

Some collaboration with NZ (radiata pine)

Cum trees trees

We share tools and systems for efficiencies

DATAPLAN (data management)

TREEPLAN (genetic evaluation)

SEEDPLAN (population management tools)

we also share technicians, breeders and geneticists

we do R and D collaboratively

National database for management of data and information

DATAPLAN system – since 2000

Web based to facilitate user access

Services multiple species – is flexible

Integrated with other tools to facilitate data analysis, genetic evaluation, population management ...

National database for management of data and information

Species	Programs	Trials	Genotypes
Radiata pine	TBA	502 (273)	1,170,910
Southern pines	HQP	102 (73)	191,996
Blue gum	TBA	243 (186)	614,820
Shining gum	Forico, STT, HVP and SCION	216 (163)	384,997
TOTAL	+ other collaborators (14)	3,430 (1452)	6,390,854

Data analysis and genetic evaluation

Data sets are large and highly unbalanced

We use best practise analytical methods

TREEPLAN software since 2001 – prediction of genetic and breeding values

We use all the data and information – both phenotypes and genotypes

in <u>single-step</u> TREEPLAN evaluations – one situation one result

Efficient for industry to invest in common platforms (across commodities)

Joint evaluations enabled for collaborating (and competing) breeding organisations

We measure a trial - we update all the breeding values

Are we making genetic gain ?

TREE

BREEDING

AUSTRALIA

Natural radiata pine stand

a selection in 2011 now progeny tested as a parent

Embedded gain designs with large plots since 2009

Gain is consistently demonstrated in independent trials for all species (IRRPLAN project)

Radiata pine improvement in marginal profit (\$NPV) for a vertically integrated industry

Radiata pine – monitoring gain for \$ index

Radiata pine – monitoring gain

Radiata pine Marginal improvement in MAI (m³/ha/yr) for a vertically integrated industry 3.50 TREEPLAN 2023 results (607,924 genotypes in 270 trials) 14% 3.00 12% in MAI (m³/ha/yr) 2.50 10% 2.00 gain 1.50 Marginal 1.00 0.50 0.00

Radiata pine Marginal reduction in SWEEP (mm/m) for a vertically integrated industry

Blue gum – monitoring gain

Improvement in marginal profit (\$NPV) per ha across generations and over time for the best 1% of genotypes (trees) based on the national economic objective for breeding

Marginal improvement in VOLUME (m³/ha) across generations and over time for the best 1% of genotypes (trees) selected using the national breeding objective index for \$NPV

Marginal improvement in timber DENSITY (Kg/m³) over time for the best 1% of genotypes (trees) selected using the national breeding objective index for \$NPV

Marginal movement in Kraft Pulp Yield (%) over time for the best 1% of genotypes (trees) selected using the national breeding objective index for \$NPV

¹-۲۰۰۰ ⁽۲۰۰۰ ⁽۲۰۰۰) ⁽۲۰۰۰ ⁽۲۰۰۰ ⁽۲۰۰۰ ⁽۲۰۰۰ ⁽۲۰۰۰ ⁽۲۰۰۰ ⁽۲۰۰۰) ⁽۲۰۰۰ ⁽۲۰۰۰ ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰ ⁽۲۰۰۰ ⁽۲۰۰۰) ⁽۲۰۰۰ ⁽۲۰۰۰ ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰ ⁽۲۰۰۰ ⁽۲۰۰۰) ⁽۲۰۰۰ ⁽۲۰۰۰ ⁽۲۰۰۰) ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰ ⁽۲۰۰۰) ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰ ⁽۲۰۰۰) ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰ ⁽۲۰۰۰) ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰ ⁽۲۰۰۰) ⁽۲۰۰۰ ⁽۲۰۰۰) ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰) ⁽۲۰۰۰ ⁽۲۰۰۰) ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰) ⁽۲۰۰۰) ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰) ⁽۲۰۰۰)</sup> ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰) ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰) ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰)</sup> ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰)</sup> ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰)</sup> ⁽۲۰۰۰) ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰)</sup> ⁽۲۰۰۰) ⁽۲۰۰۰)</sup> ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰)</sup> ⁽۲۰۰۰) ⁽۲۰۰۰)</sup> ⁽۲۰۰۰) ⁽۲۰۰۰ ⁽۲۰۰۰)</sup> ⁽۲۰۰۰) ⁽۲۰۰۰)</sup> ⁽۲۰۰۰)</sup> ⁽۲۰۰۰) ⁽۲۰۰۰)</sup> ⁽

Where does genomic selection fit?

Genotyping to date has been somewhat ad hoc – more investment in DNA assays to "commercial proof" the technology

Single-step TREEPLAN prediction operational since 2018

Evaluate benefit by increasing accuracy and reducing generation interval

Genomics is adding value in eucalypts through single step approach – mostly due to pedigree recovery and improved accuracies for early generation selections

More problematic in pines with big genomes

Can we accurately select within new FS families without phenotypes?

CONCLUSION

Cooperative and industry wide breeding programs are delivering genetic gain

Scaling up operations with more breeding and testing (phenotyping)

Economic objectives need updating

Climate change is a challenge

Genomic selection is operational (but must also be cost effective)

Share tools, systems and people across species

Science underpins decision making

Improvements (realised and projected) in marginal profit (\$NPV) from tree breeding in Radiata pine

We plant every year

Current as at 2023-07-14

We plant every year

Trials are better linked across sites and years

Families in common

Parents in common

