

Indigenous Country we work on

Assessing Vegetation Quality

- 1. Challenges
- 2. Our approach
- 3. Building partnerships

Assets We manage for New Forests

Forestry Investment Trust (FIT) estate is located within the Green Triangle region (South Australia and Victoria including Gippsland), Tasmania, and Western Australia.

TASMANIA

FIT Western Australia	Properties	171
-	Plantation	39790 ha
4	Indigenous Vegetation	12034 ha
**	PF Olsen Significance	4267 ha

FIT VIC/SA Green Triangle	Properties	265
-	Plantation	56748 ha
4	Indigenous Vegetation	4037 ha
**	PF Olsen Significance	3474 ha

FIT Tasmania	Properties	13
•	Plantation	1644 ha
4	Indigenous Vegetation	289 ha
**	PF Olsen Significance	106 ha

The Murray River Forests (MRF) estate in southeastern New South Wales.

Murray River Forests	Properties	5
-	Plantation	4899 ha
	Indigenous Vegetation	978 ha
**	PF Olsen Significance	1172 ha
	Rivers and Streams	294.1 km
	Wetlands	0 ha

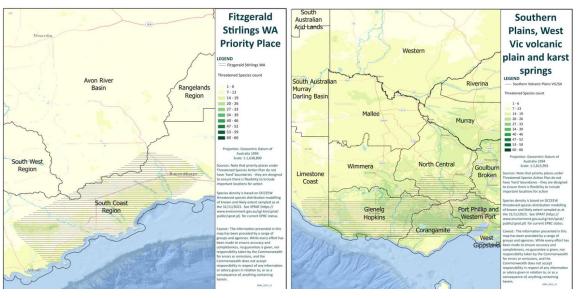
The Border Plantations estate is within the Green Triangle region (South Australia and Victoria)

Border Plantations	Properties	17
-	Plantation	2982 ha
	Indigenous Vegetation	275 ha
**	PF Olsen Significance	122 ha
==	Rivers and Streams	42 km
	Wetlands	81.5 ha

FIT Rivers and Streams

1, 647.63 km

FIT Wetlands 923.66 ha

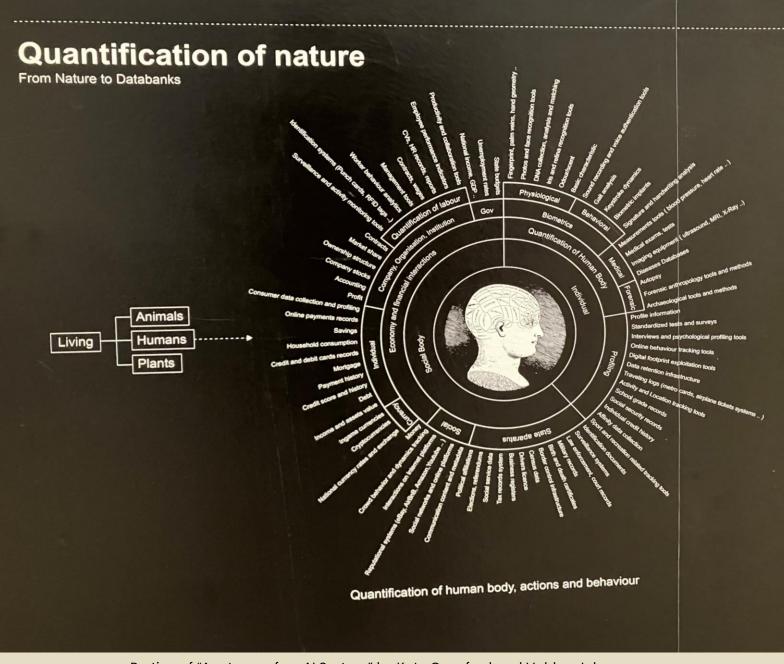

Large landscapes Of National Importance

- Widespread clearing
- Low levels of connectivity
- Rich biodiversity
- DCCEEW Priority places

Records of Conservation Priority Species

	IUCN Red list				
NSW	SA	Tas	Vic	WA	Total
	13	8	63	24	108
Environr	mental Prote	ction and Bi	odiversity Co	onservation <i>i</i>	Act 1999
NSW	SA	Tas	Vic	WA	Total
4	5	15	44	59	123
	State Government priority lists				
NSW	SA	Tas	Vic	WA	Total
20	28	16	128	67	239

Threatened Species Action Plan (DCCEEW 2022) Priority Places



Source: Proposed Nature Repair Method - Replanting Native Forest and Woodland Ecosystems Figure 1 – Eligible Regions

Challenges

Portion of "Anatomy of an Al System" by Kate Crawford and Valdan Joler Photographed at Museum of Modern Art, New York, Feb 2023

Biodiversity Metrics and measurements

"a single metric is unlikely to be possible or credible. Additionally, biodiversity

Additionally, biodiversity measurement and valuation vary by business needs and operational scales, requiring different accuracy levels, measurement frequencies, assessment boundaries, and posing challenges in data availability and quality"

UNEP-WCMC, Capitals Coalition, Arcadis, ICF, & Europe, W. (2022).

Recommendations for a standard on corporate biodiversity measurement and valuation, Aligning accounting approaches for nature.

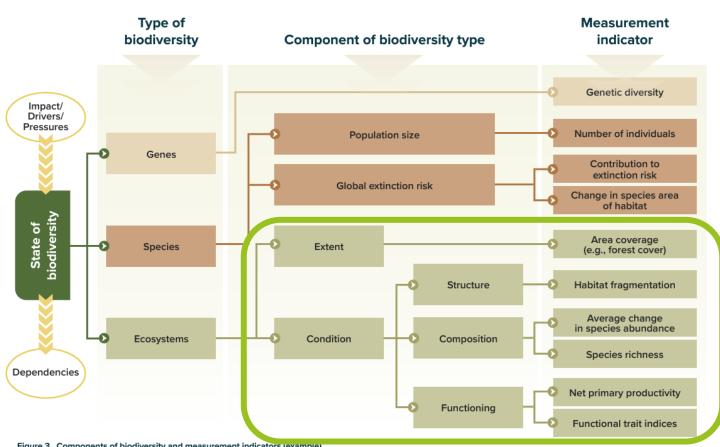


Figure 3. Components of biodiversity and measurement indicators (example, (Source: UNEP-WCMC et al., 2022)

Ecosystem Australian methods

Jurisdiction	EXTENT Stratification Method	CONDITION Quantification Method
New South Wales	Plant Community Types	Biodiversity Assessment Method
Victoria	Ecological Vegetation Classes	Vegetation Quality Assessment (Habitat Hectares)
Queensland	Regional Ecosystems	BioCondition
Tasmania	TasVeg Vegetation Communities	TasVeg Vegetation Condition Assessment
Western Australia	Vegetation Associations	Native Vegetation Condition Assessment for WA
National	National Vegetation Information System (NVIS)	Habitat Condition Assessment System (HCAS)

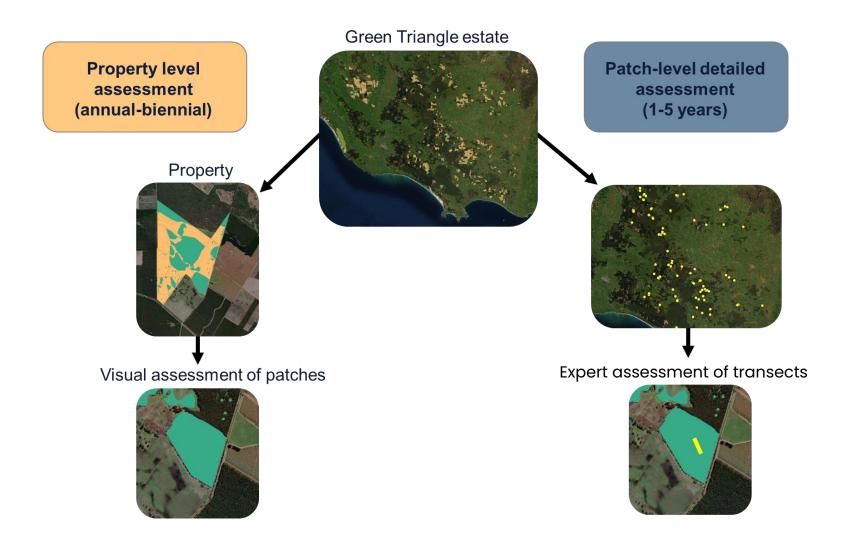
What is the value? What are you measuring?

Fx (area, importance, condition)

Our approach

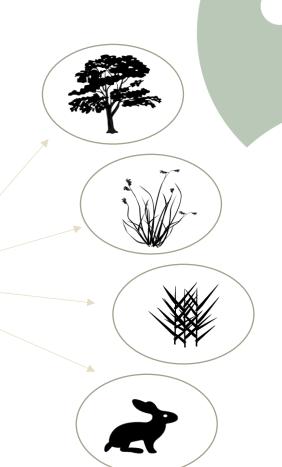
Vegetation monitoring Consultancy

PF Olsen's requirements:


- Scientifically defensible
- Nationally applicable
- Capable of detecting meaningful change in vegetation biodiversity quality
- Of sufficient quality to assist with the interpretation of other data (e.g., bird monitoring data)
- Objective
- Repeatable (for accurate change detection)
- Practicable: easily understood, efficient and cost effective
- Informative to drive management decisions

University of Melbourne Two level approach

Flare Wildfire Research, School of Ecosystem and Forest Sciences, University of Melbourne



Property level Objectives

- Confirm extent and classification of Vegetation Community
- Characterise key structural elements
- Capture evidence of broad threats
- Whole-property assessment with visual assessments of each remnant patch
- Prioritise allocation of detailed transect assessments
- Expert assessment initially but subsequent reviews by staff or "citizen scientists"

Property level Assessed attributes

Values

Native tree health

Native shrub health

Native herbs

Tree regeneration

Threats

Herbaceous weeds

Woody weeds

Pest animals

Operational impacts

Property level Attribute rating

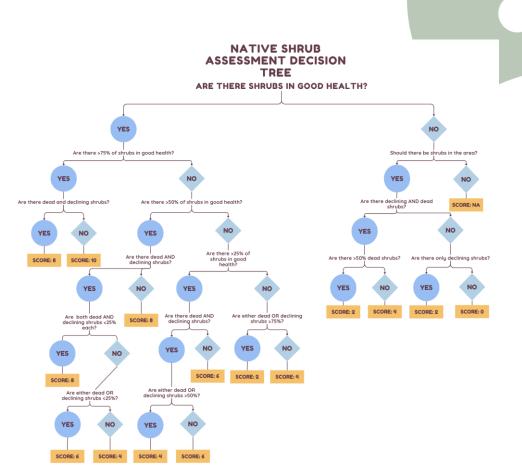
Are either dead OR

declining trees <25%?

SCORE: 3

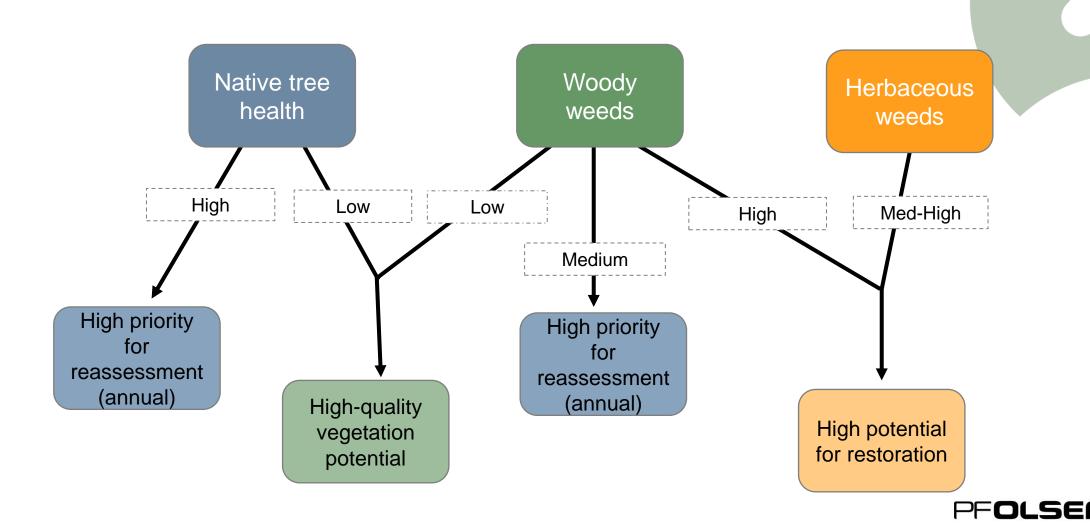
SCORE: 6

Are either dead OR


declining trees >50%?

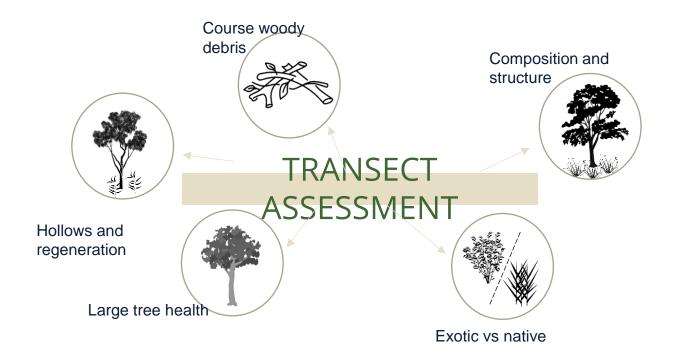
SCORE: 4

Are there dead and declining trees? Are there only declining trees?


TREE ASSESSMENT

DECISION TREE

Property level Management levers

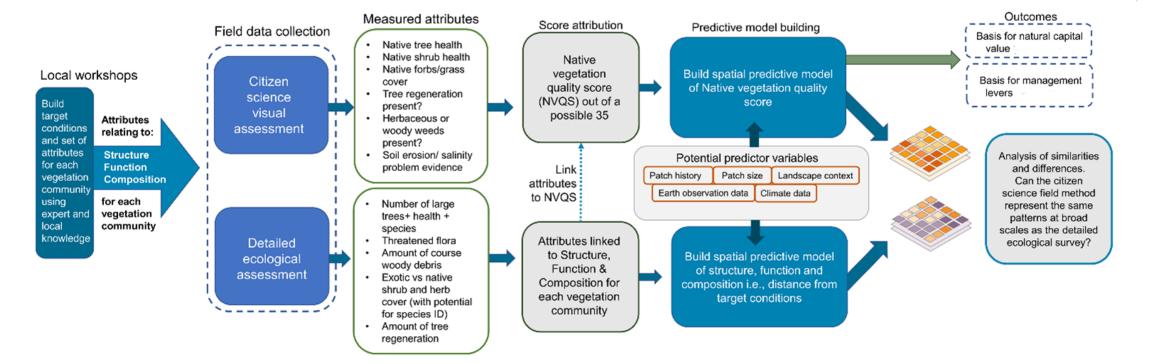

Patch level Method

- Detailed transects, expert ecologists
- Capture subtle, early warning changes
- Objective, repeated measures
- Yearly to 5-yearly basis (same season)
- 'Baseline' of natural variation
- Quantify standing carbon
- Reference sites ← → remote sensing
- Random by bioregions and vegetation types

Patch level Method

How many?

Region	University of Melbourne Stratification	Accounting for Nature Native Vegetation Method No 7
Green Triangle	155	343
Western Australia	88	251


Building partnerships

Integrated Framework

Value

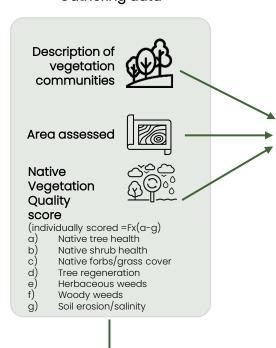
According to whom?

Current state versus 'ideal state'
What is an ideal state?

- Pre 1750
- Traditional owners
- Threatened species
- Investors
- Something else?

Taking to market Grant application

DCCEEW: Nature Repair Market Innovative Biodiversity Monitoring Grant Application, May 2023



Gathering data

Individual scores inform and

focus management

Nationally Applicable Vegetation Quality Assessment Method (NAVQAM)

Auditable basis of natural capital value

CREDIBLE

ROBUST

SCALABLE

Citizen science annual assessment 'around truth'

TRUSTED

community, Bioregion

Detailed ecological assessment

Scores area and quality of

Data analysis and scientific validation of method

Broadscale remote sensing

	Area	Native Vegetation Quality Score	Total native vegetation score	Attribute d Value (\$/ha)	Total Natural Capital Deemed Value
Grassy Woodlands	345	0.33	114	\$5,000	\$569k
Herb-rich Woodlands	6000	0.60	3600	\$2,000	\$7,200k
†	×		†		†

l vegetation communities
Filter data by catchment, Set
LGA, State, Vegetation ir

Sets baseline for measuring impact of management

Integrates with adaptive management of plantations, environmenta restoration and NRM of conservation reserves

Regional Consultations

Green Triangle - workshop

South coast WA

COMMUNITY NATURAL CAPITAL PROGRAM

A Sustainable and Thriving Future for All

First steps Adaptive management

- Building a new data framework in uncertain policy environment
- Based on good science and broad consultation
- Can't wait for a perfect solution.
- Learning from our 10 years of Birdlife surveys

Amount remnant vegetation to observe 90% of maximum bird species (E.K. Thompson 2024)

Bird group	90%
Overall	13
Forest	17
Open country	0
Insectivores	18
Large Hollow nesters	19

For a recorded discussion of these findings

